AN EXTREMAL PROBLEM IN THE THEORY OF HARDY FUNCTIONS

BY

H. DYM

ABSTRACT

It is proved that if j is an inner function and $\rho(T) = \sup |\int (e^{i\gamma T}/j(\gamma))f(\gamma)d\gamma|$ over f in the unit ball of H^+ , then either $\rho(T) \equiv 1$ for all $T \ge 0$, or else $\rho(T) \downarrow 0$ exponentially fast as $T \uparrow \infty$. The inner functions j corresponding to each alternative are classified.

1. Introduction

The purpose of this paper is to study the limit, as $T \uparrow \infty$, of

$$\rho(T) = \sup \left| \int e^{i\gamma T} \frac{f(\gamma)}{j(\gamma)} d\gamma \right| : f \in H^{+}, ||f|| = 1$$
$$= \inf \left\| \frac{e^{i\gamma T}}{j(\gamma)} - k(\gamma) \right\|_{\infty} : k \in H^{\infty},$$

in which the limits of integration (in this and all other such unmarked integrals) are $\pm \infty$, H^p designates the space of Hardy functions over the upper half-plane, and j is a so-called *inner* function. The function $\rho(T)$ arises in the study of the asymptotic orthogonality of (a class of) weakly stationary processes; it measures the cosine of the angle between the past $[x(t):t \le 0]$ and the future $[x(t):t \ge T]$. (See Ibragimov [6], Helson-Sarason [4] and Dym-McKean [3] for additional information.) Besides this, $\rho(T)$ enters in the study of the compactness of translation restricted to certain subspaces of $L^2(0,\infty)$ (See Koosis [7] and Lax [8]).

In this paper the following two theorems are proved:

THEOREM 1.

$$\rho(T+S) \leq \rho(T)\rho(S)$$

for every choice of $S \ge 0$ and $T \ge 0$, and so either $\rho \equiv 1$ or else $\rho(T) \to 0$ exponentially fast, as $T \uparrow \infty$.

THEOREM 2. $\rho(T) \rightarrow 0$ as $T \rightarrow \infty$ if and only if the inner function j has no singular factors and its roots $\omega_n = a_n + ib_n$ meet the condition

$$\sum_{n=1}^{\infty} \frac{b_n}{|\gamma - \omega_n|^2} \leq M < \infty$$

for all real y.

2. Proof of Theorem 1

The proof is broken into a number of steps. In these H^2 is to be thought of as a closed subspace of the Hilbert space $L^2(R^1, d\gamma)$; (,) denotes the standard inner product and $\omega^* = a - ib$ the complex conjugate of $\omega = a + ib$. Hoffman [5] and Duren [2] are the standard references for H^p spaces; the first two chapters of Dym-McKean [3] contain a succinct treatment of everything along these lines which is needed for this paper.

Step 1. $f \in H^2 \bigcirc jH^2$ if and only if $(f/j)^* \in H^2 \bigcirc jH^2$.

PROOF. If $f \in H^2 \cap jH^2$, then the map

$$V: f \rightarrow (f/j)^*$$

sends $H^2 \bigcirc jH^2$ into itself. The statement drops out from the fact that V^2 is the identity.

Step 2. Let \mathfrak{P} denote the orthogonal projection of $L^2(\mathbb{R}^1)$ onto H^2 and let

$$\mathfrak{P}_T = \mathfrak{P}e^{-i\gamma T}$$
, restricted to $H^2 \bigcirc jH^2$.

Then

$$\rho(T) = \|\mathfrak{P}_T\|$$

$$= \sup \|\mathfrak{P}e^{-i\gamma T}f\| : f \in H^2 \ominus jH^2 \quad \text{and} \quad \|f\| = 1.$$

PROOF. Let A[B] denote the unit sphere of $H^2 \bigcirc jH^2[H^2]$. Then, by step 1,

$$\sup_{f \in A} \|\mathfrak{P}_{T}f\| = \sup_{f \in A} \|\mathfrak{P}_{T}Vf\|$$

$$= \sup_{f \in A} \sup_{g \in B} |(g, \mathfrak{P}_{T}Vf)|$$

$$= \sup_{f \in A} \sup_{g \in B} \left| \int \frac{e^{i\gamma T}}{j(\gamma)} f(\gamma) g(\gamma) d\gamma \right|$$

$$= \sup_{f \in B} \sup_{g \in B} \left| \int \frac{e^{i\gamma T}}{j(\gamma)} f(\gamma) g(\gamma) d\gamma \right|$$

$$= \rho(T).$$

The change of function class from $f \in A$ to $f \in B$ in the next to last line does not affect the equality because

$$\int \frac{e^{i\gamma T}}{\dot{j}(\gamma)} f_{i}(\gamma) g(\gamma) d\gamma = 0$$

for $f_1 \in jH^2$. The final identification with $\rho(T)$ follows from the fact that the product of two H^2 functions belongs to H^1 and that conversely every $h \in H^1$ can be expressed as the product h_1h_2 of two H^2 functions with

$$\|\boldsymbol{h}_1\boldsymbol{h}_2\|_1 = \|\boldsymbol{h}_1\|_2 \|\boldsymbol{h}_2\|_2.$$

STEP 3. If $T \ge 0$ and $S \ge 0$, then \mathfrak{P}_{τ} maps $H^2 \bigcirc jH^2$ into itself, and $\mathfrak{P}_{\tau}\mathfrak{P}_S = \mathfrak{P}_{\tau+s}$.

PROOF. If $f \in H^2 \ominus jH^2$ and $g \in H^2$, then

$$(\mathfrak{P}_T f, jg) = (e^{-i\gamma T} f, jg)$$
$$= (f, e^{i\gamma T} ig) = 0$$

for $T \ge 0$. This proves that $\mathfrak{P}_{\tau}f$ is orthogonal to jH^2 and so too that \mathfrak{P}_{τ} maps $H^2 \ominus jH^2$ into itself. Therefore $\mathfrak{P}_s \mathfrak{P}_{\tau}$ is well defined since the range of \mathfrak{P}_{τ} is included in the domain of \mathfrak{P}_s . The semigroup identity is now easily verified: for every $g \in H^2$ and $f \in H^2 \ominus jH^2$,

$$(g, \mathfrak{P}_S \mathfrak{P}_T f) = (e^{i\gamma S} g, \mathfrak{P}_T f)$$

$$= (e^{i\gamma S} g, e^{-i\gamma T} f)$$

$$= (g, e^{-i\gamma (S+T)} f)$$

$$= (g, \mathfrak{P}_{S+T} f).$$

[†] This is perhaps more transparent if you bear in mind that \mathfrak{P}_T is unitarily equivalent to left translation restricted to a left invariant subspace of $L^2[0,\infty)$. A direct proof is furnished in order to both simplify the exposition and to help set the notation.

Step 4. Step 4 is to combine the implications of steps 2 and 3 to prove the Theorem:

$$\rho(S+T) = \|\mathfrak{P}_{S+T}\|$$

$$= \|\mathfrak{P}_S \mathfrak{P}_T\|$$

$$\leq \|\mathfrak{P}_S\| \|\mathfrak{P}_T\| = \rho(S)\rho(T).$$

3. Proof of Theorem 2.

Let \mathfrak{H}_{∞} denote the closure in $L^{\infty}(R^{\perp})$ of $\bigcup_{T\geq 0} e^{-i\gamma T} H^{\infty}$ and observe that $\rho(T) \rightarrow 0$ as $T \uparrow \infty$ if and only if 1/j belongs to \mathfrak{H}_{∞} .

LEMMA 1. (Mentioned in [1]) \mathfrak{F}_{∞} is a subalgebra of L^{∞} which contains the class of functions f which are bounded and uniformly continuous on R^{\perp} .

PROOF. If f is bounded and uniformly continuous on R^{\perp} , then

$$f_{T}(\omega) = \frac{e^{i\omega T}}{\pi} \int f(\gamma) 2 \frac{\sin^{2} \frac{T}{2}(\omega - \gamma)}{T(\omega - \gamma)^{2}} d\gamma$$

belongs to H^* for every T > 0 and

$$||e^{-i\omega T}f_T-f||_{\infty} \rightarrow 0,$$

as $T \uparrow \infty$. This proves the second assertion; the first is easily verified.

LEMMA 2. (Adapted from [7]) If j is an inner function and 1/j belongs to \mathfrak{F}_{∞} , then

$$\left|\frac{1}{j(a+ib)}\right| \leq L < \infty$$

in a horizontal strip $0 < b \le \delta$.

PROOF. By hypothesis, you can find a function $k \in H^*$ and a number T > 0 such that

$$\left|\frac{1}{j(\gamma)} - e^{-i\gamma T} k(\gamma)\right| \le \epsilon < \frac{1}{2} \quad (\gamma \in R^1)$$

for any such preassigned $\epsilon > 0$. Now, as j and $e^{-i\gamma T}$ have modulus 1 on R^{+} , you see that

$$|e^{i\gamma T} - j(\gamma)k(\gamma)| \le \epsilon$$
 $(\gamma \in R^{\tau})$

and

$$|k(\gamma)| \le 1 + \epsilon$$
 $(\gamma \in R^1).$

Moreover, these last two bounds propagate to all of R^{2+} since the functions being bounded from above belong to H^{∞} . In particular,

$$|e^{i(a+ib)T}-j(a+ib)k(a+ib)| \le \epsilon$$

for all $b \ge 0$, and so

$$|1 - e^{-i(a+ib)T}j(a+ib)k(a+ib)| \le \epsilon e^{bT} < \frac{1}{2}$$

for sufficiently small b > 0. But this means that

$$|e^{-i(a+ib)T}j(a+ib)k(a+ib)| \ge \frac{1}{2}$$

for such b, or what is the same

$$\left|\frac{1}{j(a+ib)}\right| \le 2 e^{bT} \left| k(a+ib) \right|$$

$$\le \frac{1+\epsilon}{\epsilon}.$$

LEMMA 3.[†] If $\zeta = u + iv \in \mathbb{R}^{2+}$, if $\xi \in \mathbb{R}^{2+}$, and if $|\xi/\zeta| \leq \frac{1}{2}$, then there exists a complex number α with $|\alpha| \leq 2$, such that

$$\frac{1-\xi/\zeta^*}{1-\xi/\zeta} = \exp\left\{\frac{-2iv\xi}{|\zeta|^2} \left[1+\alpha \frac{|\xi|}{|\zeta|}\right]\right\}.$$

PROOF. To begin with

$$\frac{1-\xi/\zeta^*}{1-\xi/\zeta} = \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n} \left[\left(\frac{\xi}{\zeta}\right)^n - \left(\frac{\xi}{\zeta^*}\right)^n \right] \right\}$$
$$= \exp\left\{ \frac{-2iv\xi}{|\zeta|^2} + \sum_{n=2}^{\infty} \frac{\xi^n}{n} \frac{(\zeta^*)^n - \zeta^n}{|\zeta|^{2n}} \right\}.$$

The next step is to estimate the second term in the exponential with the help of the inequality

$$\left|\zeta^{n}-(\zeta^{*})^{n}\right|=\left|\int_{-1}^{1}n(u+isv)^{n-1}ivds\right|\leq n\left|\zeta\right|^{n-1}2v.$$

This gives you the bound

 $⁺ R^{2+}[\overline{R^{2+}}]$ stands for the open (closed) upper-half plane.

$$\left|\sum_{n=2}^{\infty} \frac{\xi^{n}}{n} \frac{(\zeta^{*})^{n} - \zeta^{n}}{|\zeta|^{2n}}\right| \leq \frac{2v|\xi|}{|\zeta|^{2}} \sum_{n=2}^{\infty} |\xi/\zeta|^{n-1}$$

$$= \frac{2v|\xi|}{|\zeta|^{2}} \frac{|\xi/\zeta|}{1 - |\xi/\zeta|}$$

$$\leq \frac{2v|\xi|}{|\zeta|^{2}} 2|\xi/\zeta|.$$

The final statement follows upon combining estimates.

LEMMA 4. If j = P is a Blaschke product with roots $\omega_n = a_n + ib_n \in \mathbb{R}^{2+}$, then 1/j belongs to \mathfrak{F}_{∞} if and only if

$$\sum \frac{b_n}{|\gamma - \omega_n|^2} \leq M < \infty$$

for all $\gamma \in R^1$.

PROOF. If 1/P belongs to \mathfrak{H}_{∞} , then by Lemma 2,

$$\left|\frac{1}{P(a+ib)}\right| \leq L < \infty$$

in a horizontal strip $0 \le b \le \delta$ of width $\delta > 0$. In particular, this means that the roots ω_n of P lie above this strip: $b_n \ge \delta$, and so

$$\frac{b}{|\gamma - \omega_n|} \leq \frac{b}{b_n} \leq \frac{b}{\delta} \leq \frac{1}{2}$$

for $\gamma \in R^+$ and $0 \le b \le \delta/2$. Therefore (as 0 is not a limit point of the roots ω_n) the product P can be written in the form

$$P(\omega) = \prod_{n=1}^{\infty} \frac{1 - \omega/\omega_n}{1 - \omega/\omega_n^*}$$

and Lemma 3 provides a lower bound for each term in the partial product

$$1/P_N(\omega) = \prod_{n=1}^N \frac{1 - \omega/\omega_n^*}{1 - \omega/\omega_n}$$

in the smaller strip $\omega = a + ib$ with $0 \le b \le \delta/4$:

$$L \ge 1/|P_N(a+ib)|$$

$$= \left| \prod_{n=1}^{N} \frac{1 - \frac{ib}{\omega_n^* - a}}{1 - \frac{ib}{\omega_n - a}} \right|$$

$$= \left| \exp \left\{ \sum_{n=1}^{N} \frac{2b_n b}{|\omega_n - a|^2} \left[1 + \frac{\alpha_n b}{|\omega_n - a|} \right] \right\} \right|$$

$$\geq \exp \left\{ \sum_{n=1}^{N} \frac{b_n b}{|\omega_n - a|^2} \right\}.$$

To finish, let $N \uparrow \infty$.

It remains to show that 1/P is uniformly continuous on R^{\perp} under the stated root conditions. But, for real γ and real ϵ ,

$$\left| \frac{1}{P(\gamma + \epsilon)} - \frac{1}{P(\gamma)} \right| = \left| \frac{P(\gamma)}{P(\gamma + \epsilon)} - 1 \right|$$

$$= \left| \prod_{n=1}^{\infty} \frac{1 - \frac{\epsilon}{\omega_n^* - \gamma}}{1 - \frac{\epsilon}{\omega_n - \gamma}} - 1 \right|$$

$$= \left| e^{i\phi} - 1 \right|$$

$$\leq \left| \phi \right|$$

where

$$i\phi = \sum_{n=1}^{\infty} \frac{-2ib_n\epsilon}{|\omega_n - \gamma|^2} \left[1 + \frac{\alpha_n\epsilon}{|\omega_n - \gamma|} \right]$$

by Lemma 3, assuming as you may, that $|\epsilon/(\omega_n - \gamma)| \le \frac{1}{2}$. The bound

$$|i\phi| \le 4\epsilon \sum_{n} \frac{b_n}{|\omega_n - \gamma|^2} \le 4\epsilon M$$

is now self-evident as is the uniform continuity of 1/P:

$$\left|\frac{1}{P(\gamma+\epsilon)}-\frac{1}{P(\gamma)}\right|\leq 4\epsilon M.$$

LEMMA 5. If j = S is purely singular, then 1/j does not belong to \mathfrak{F}_{∞} .

Proof. In the upper-half plane, a singular inner function S can be expressed in the form

$$S(\omega) = \exp\left\{-\frac{1}{\pi i} \int \left[\frac{1}{\gamma - \omega} - \frac{\gamma}{\gamma^2 + 1}\right] dF(\gamma)\right\}$$

in which F is a non-decreasing singular function which is subject to the constraint $\int (\gamma^2 + 1)^{-1} dF(\gamma) < \infty$. Now if 1/S belongs to \mathfrak{F}_{∞} , then by Lemma 2, the harmonic function

$$u(a,b) = -\log|S(a+ib)|$$

$$= \frac{b}{\pi} \int \frac{1}{(\gamma - a)^2 + b^2} dF(\gamma)$$

is uniformly bounded in the horizontal strip $0 < b \le \delta$. This clearly rules out jumps in F and at the same time permits you to invoke the dominated convergence theorem in order to evaluate

$$F(\gamma_2) - F(\gamma_1) = \lim_{b \downarrow 0} \int_{\gamma_1}^{\gamma_2} u(a, b) da$$

$$= \int_{\gamma_1}^{\gamma_2} \lim_{b \downarrow 0} u(a, b) da$$

$$= \int_{\gamma_1}^{\gamma_2} F'(a) da = 0.$$

COROLLARY. If $1/j \in \mathfrak{H}_{\infty}$, then the inner function j has no singular factors.

PROOF. If $j = Sj_1$ is the product of a singular inner function S with a second inner function j_1 and if 1/j belongs to \mathfrak{F}_{∞} , then so does

$$\frac{1}{S} = j_1 \cdot \frac{1}{j}$$

in contradiction to Lemma 5.

The proof of the theorem is now easily completed with the help of Lemmas $1\cdots 5$ and the last corollary. The latter implies that if $1/j \in \mathfrak{F}_{\infty}$, then j is a constant multiple of $Pe^{i\gamma c}$ with P a Blaschke product and $c \ge 0$ a constant. Therefore, 1/P also belongs to \mathfrak{F}_{∞} , and so the bound on the roots follows by Lemma 4. Conversely, if the root constraint is met, then 1/P belongs to \mathfrak{F}_{∞} as does 1/j for any inner function j with Blaschke part P and no singular factors.

REFERENCES

1. A. Devinatz, On Wiener-Hopf operators, Proceedings Irvine Conference on Functional Analysis, Thompson, Washington, D.C., 1967, pp. 81-118.